
P1: GCR

International Journal of Theoretical Physics [ijtp] pp777-ijtp-461705 April 1, 2003 21:12 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 42, No. 1, January 2003 (C© 2003)

New Even and Odd Nonlinear Coherent States
and Their Nonclassical Properties

Ji-Suo Wang,1,2,4 Jian Feng,1,2 Yun-Feng Gao,1 Tang-Kun Liu, 2,3

and Ming-Sheng Zhan2

Received September 13, 2002

Based on Roy and Roy’s work (Roy, B. and Roy, P. (2000).Journal of Optics B: Quantum
Semiclass. Opt.2, 65), a new type of even and odd nonlinear coherent states (NCSs) are
defined. They result from Schr¨odinger cat states for deformed field. Using the numerical
method, we study nonclassical properties of the new even and odd NCSs. It is shown that
quantum statistical properties of the new even and odd NCSs are quite different from
those of the usual even and odd coherent states (CSs). It is found that the squeezing only
consists in the new even NCS, and the amplitude-squared squeezing and antibunching
effect appear for both new even and odd NCSs in some ranges of|β|.

KEY WORDS: even and odd nonlinear coherent states; squeezing; amplitude-squared
squeezing; antibunching effect.

1. INTRODUCTION

The concept of coherent states (CSs) was introduced by Glauber (1963),
since then they were attained an important position in the study of quantum optics.
This is because the CSs not only have physical substance but also yield a very
useful representation. The usual CSs advanced by Glauber are eigenstates of the
annihilation operatora of the harmonic oscillator. Based on Glauber’s work, the
even and odd CSs were introduced in Dodonovet al. (1974). The even (odd)
CSs are the symmetric (antisymmetric) combination of the CSs. They are two
orthonormalized eigenstates of the square (a2) of the annihilation operatora, and
essentially have two kinds of nonclassical effects: the even CS has a squeezing but
no antibunching effect, while the odd CS has an antibunching but no squeezing
effect (Hillery, 1987; Xia and Guo, 1989).
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On the other hand, quantum group (Drinfeld, 1986; Jimbo, 1986), introduced
as a mathematical description of deformed Lie algebras, has given the possibil-
ity of generalizing the notion of creation and annihilation operators of the usual
oscillator and to introduceq-oscillators (Biedenharn, 1989; Macfarlane, 1989).
The latter were interpreted (Man’koet al., 1993a,b) as nonlinear oscillators with a
very specific type of nonlinearity, in which the frequency of vibration depends on
the energy of these vibrations through the hyperbolic cosine function containing
a parameter of nonlinearity. This interpretation ofq-oscillators becomes obvious
if one uses the classical counterpart of the original quantumq-oscillators. This
observation suggests that there might exist other types of nonlinearity for which
the frequency of oscillation varies with the amplitude via a generic functionf , this
leads to the concept off -oscillators devised in (Man’koet al. (1997). Then, the
notion of f -CSs, i.e., the nonlinear coherent states (NCSs), was straightforwardly
introduced (Man’koet al., 1997), and the generation of such NCSs enter in the real
possibilities of trapped systems (de Matos Filho and Vogel, 1996). These NCSs
exhibit nonclassical features like squeezing and self-splitting. Based on the work
(Man’ko et al., 1997), the concept of even and odd NCSs were constructed in
Mancini (1997). A kind of orthogonal even NCSs were introduced by Das (2000).
Recently, a new kind of NCSs was constructed by Roy and Roy (2000) (referred
as Roy-type NCSs hereafter). In this paper, we define a new type of even and odd
NCSs. They result from Schr¨odinger cat states for deformed field. We investigate
the quantum statistical properties of the states, including quadrature squeezing,
amplitude-squared squeezing, and antibunching effect. Because of these effects
they have the typical nonclassical properties. It is shown that nonclassical proper-
ties of the new even and odd NCSs are very different from those of the usual even
and odd CSs.

2. DEFINITION OF NEW EVEN AND ODD NCSS

For convenience of reference and completeness, in this section we begin with
some related results for thef -CSs (i.e., the NCSs) (Man’koet al., 1997) and the
Roy-type NCSs (Roy and Roy, 2000).

We note that the generalized annihilation (creation) operator associated with
NCSs is given by

A = a f (N), A+ = f (N)a+, N = a+a, (1)

wherea+ anda are standard harmonic oscillator creation and annihilation opera-
tors and f (x) is a reasonably well-behaved real function, called the nonlinearity
function. From the relations (1), it follows thatA, A+, andN satisfy the following
closed algebraic relations:

[N, A] = −A, [N, A+] = A+, (2)
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[ A, A+] = f 2(N)(N + 1)− f 2(N − 1)N. (3)

Clearly, the nature of the nonlinear algebra depends on the choice of the nonlinear-
ity function f (N). For f (N) = 1 we regain the Heisenberg algebra. NCSs|α, f 〉
are then defined as right eigenstates of the generalized annihilation operatorA (de
Matos Filho and Vogel, 1996; Man’koet al., 1997):

A|α, f 〉 = α|α, f 〉. (4)

In the number state basis,|α, f 〉 is given by

|α, f 〉 = C
∞∑

n=0

αn

√
n! f (n)!

|n〉, C =
{ ∞∑

n=0

|α|2n

n![ f (n)!] 2

}−1/2

, (5)

whereα is a complex number,f (n)! = f (n) f (n− 1) · · · f (1) f (0), and f (0)= 1.
The canonical conjugate of the generalized annihilation and creation operators

A andA+ are given by (Roy and Roy, 2000):

B = a
1

f (N)
, B+ = 1

f (N)
a+. (6)

Thus A, B+, and their conjugates satisfy the following algebras (Roy and Roy,
2000):

[ A, B+] = 1, [B, A+] = 1. (7)

In the number state basis, the Roy-type NCSs (Roy and Roy, 2000) are defined as
the right eigenstates of the new generalized annihilation operatorB,

|β, f 〉 = Nf

∞∑
n=0

βn f (n)!√
n!
|n〉, Nf =

{ ∞∑
n=0

|β|2n[ f (n)!] 2

n!

}−1/2

, (8)

whereβ is an arbitrary complex number.
Now, we follow the definition of the even and odd NCSs (Mancini, 1997)

(i.e., the eigenstates of the operatorA2), and define a new kind of even (+) and
odd (−) NCSs (called even/odd Roy-type NCSs) in a straightforward manner as

|β, f 〉± = N±(|β, f 〉 ± | −β, f 〉), (9)

where the constantsN± are determined from the normalization condition
±〈β, f | β, f 〉± = 1, and the result is

N± =
{

2± 2N2
f

∞∑
n=0

(−|β|2)n[ f (n)!] 2

n!

}−1/2

. (10)
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It is easy to prove that the states (9) are the orthonormalized eigenstates of the
squareB2 of the operatorB, i.e.,

B2|β, f 〉± = β2|β, f 〉±. (11)

They can be considered as Schr¨odinger cat states for a deformed field.
By using Eqs. (8) and (9), the even and odd Roy-type NCSs can be expanded

in the number basis as

|β, f 〉± = N±Nf

∞∑
n=0

[βn ± (−β)n] f (n)!√
n!

|n〉. (12)

From this expression, it becomes evident that the even (odd) Roy-type NCS has
a vanishing probability of containing an odd (even) number of photons. As a
consequence the number probability is found to be strongly oscillating, which is
a peculiarity of highly nonclassical states. These oscillations are also present in
the nondeformed even and odd CSs, but here the profile of the distribution will be
determined byf .

3. NONCLASSICAL PROPERTIES OF THE EVEN
AND ODD ROY-TYPE NCSS

In this section, we shall examine squeezing, amplitude-squared squeezing,
and antibunching properties of the even and odd Roy-type NCSs|β, f 〉± given
by Eq. (12). However, before we proceed any further it is necessary to specify the
nonlinearity functionf (n). From Eq. (12), it is clear that for every choice off (n)
we shall have the different even and odd NCSs. In the present case, we choose
the following nonlinearity function which has been used in the description of the
motion of a trapped ion (de Matos Filho and Vogel, 1996):

f (n) = L1
n(η2)[(n+ 1)L0

n(η2)]−1, (13)

where η is known as the Lamb-Dicke parameter andLm
n (x) are generalized

Laguerre polynomials (Abramowitz and Stegun, 1972). Clearly,f (n) = 1 when
η = 0 and in this case the new even and odd NCSs become the usual even and
odd CSs (Hillery, 1987; Xia and Guo, 1989) respectively. However, whenη 6= 0
nonlinearity starts developing, with the degree of nonlinearity depending on the
magnitude of the parameterη.

3.1. Quadrature Squeezing

We first consider the usual squeezing in terms of the quadrature operatorsX1

andX2 defined as

X1 = (a+ + a)/2, X2 = i (a+ − a)/2, (14)
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such that

[X1, X2] = i /2, (15)

which implies the uncertainty relation〈
(1X1)2

〉〈
(1X2)2

〉 ≥ 1

16
. (16)

Then the squeezing of the two operators may be conveniently described by the
following two parameters

Di (1)= 4
〈
(1Xi )

2
〉− 1, (i = 1, 2). (17)

The quantities given in Eq. (17) are also described in terms of the operatorsa and
a+ as follows:

D1(1)= 2〈a+a〉 + 〈a+2 + a2
〉− 〈a+ + a〉2, (18a)

D2(1)= 2〈a+a〉 − 〈a+2 + a2
〉+ 〈a+ − a〉2, (18b)

where−1≤ Di (1) < 0 for the usual squeezing of the field in the directionXi (i = 1
or 2), and the maximum squeezing (100%) is obtained whenDi (1)= −1(i = 1
ior 2).

Now, we study the characteristics of the squeezing in the even and odd Roy-
type NCSs [i.e., the states described by Eq. (12)].

Using Eq. (12), for the even and odd Roy-type NCSs, we have obtained the
following expectation values of some operators:

〈a+a〉± = N2
±N2

f

∞∑
n=0

|βn+1± (−β)n+1|2[ f (n+ 1)!]2

n!
, (19)

〈a〉± = 0, 〈a+〉± = 0, (20)

β−2〈a2〉± = β∗−2〈a+2〉± = N2
±N2

f

∞∑
n=0

|βn ± (−β)n|2 f (n)! f (n+ 2)!

n!
. (21)

Substituting Eqs. (19)–(21) into Eq. (18), with the aid of a numerical method, the
variations of functionsD1(1) andD2(1) versus|β| (when argβ = 0 andη2 = 0.7)
are shown in detail in Fig. 1.

From Fig. 1, it is evident that in some ranges of|β|, the quadrature squeezing
only consists in the even Roy-type NCS (in the directionX1). For a fixed value
(η2 = 0.7) of the parameterη, the ranges are 0.4323< |β|. The result shows that
the quadrature squeezing properties of the even Roy-type NCS are very different
from those of the usual even CS (Xia and Guo, 1989).
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Fig. 1. Variation of the functionsD1(1) and D2(1) with |β| for
η2 = 0.7. Solid curves (the even Roy-type NCS) and broken curves
(the odd Roy-type NCS).

3.2. Amplitude-Squared Squeezing

To examine whether or not the even and odd Roy-type NCSs exhibit
amplitude-squared squeezing, we introduce the following Hermitian operators:

Y1 =
(
a+

2 + a2
)
/2, Y2 = i

(
a+

2 − a2
)
/2. (22)

ThenY1 andY2 obey the commutation relation

[Y1, Y2] = i

2

[
a2, a+

2] = i (2N + 1), (N = a+a), (23)

and the uncertainty relation〈
(1Y1)2

〉〈
(1Y2)2

〉 ≥ |〈N + 1/2〉|2. (24)

A state is said to show amplitude-squared squeezing in theYi variable if〈
(1Yi )

2
〉
< |〈N + 1/2〉|, (i = 1, 2). (25)

To examine the degree of the amplitude-squared squeezing, we define the squeezed
degree of the amplitude-squared squeezing in the following form

Di (2)=
〈
(1Yi )2

〉− 1
4

〈[
a2, a+

2]〉
1
4

〈[
a2, a+2

]〉 , (i = 1, 2), (26)
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which is also described in terms ofa anda+ as follows:

D1(2)= 2
〈
a+

2
a2
〉+ 〈a+4 + a4

〉− 〈a+2 + a2
〉2〈

a2a+2
〉− 〈a+2a2

〉 , (27a)

D2(2)= 2
〈
a+

2
a2
〉− 〈a+4 + a4

〉+ 〈a+2 − a2
〉2〈

a2a+2
〉− 〈a+2a2

〉 , (27b)

where−1≤ Di (2) < 0 for the amplitude-squared squeezing of the field in the
directionYi (i = 1 or 2), and the maximum squeezing (100%) is obtained when
Di (2)= −1(i = 1 or 2).

Using Eq. (12), for the even and odd Roy-type NCSs, we have obtained the
following expectation values of some operators:〈

a+
2
a2
〉
± = N2

±N2
f

∞∑
n=0

|βn+2± (−β)n+2|2[ f (n+ 2)!]2

n!
. (28)

β−4
〈
a4
〉
± = β∗

−4〈
a+

4〉
± = N2

±N2
f

∞∑
n=0

|βn ± (−β)n|2 f (n)! f (n+ 4)!

n!
. (29)

〈
a2a+

2〉
± = N2

±N2
f

∞∑
n=0

|βn ± (−β)n|2[ f (n)!] 2

n!
(n+ 1)(n+ 2). (30)

Substituting Eqs. (21), (28)–(30) into Eq. (27), with the aid of a numerical method,
the variations of functionsD1(2) andD2(2) versus|β| (when argβ = 0 andη2 =
0.7) are shown in detail in Fig. 2.

From Fig. 2, we can obtain that for a fixed value of the parameterη and in
some different ranges of|β|, the even and odd Roy-type NCSs may exhibit the
amplitude-squared squeezing in the directionX1. For example, the corresponding
ranges forη2 = 0.7 are|β| < 0.5135 and|β| < 1.5196, respectively. This means
that the amplitude-squared squeezing properties of the even and odd Roy-type
NCSs are very different from those of the usual even and odd CSs (Sunet al.,
1992; Xia and Guo, 1989).

3.3. Antibunching Effect

Now, we study the antibunching effect of the even and odd Roy-type NCSs
given by Eq. (12). If the second-order correlation function of a light field (Walls,
1983) is less than 1, i.e.,g(2)(0) < 1, one says that the light field exhibits an
antibunching effect. In a similar way, we introduce the second-order correlation
for the even and odd Roy-type NCSs,

g(2)
± (0)= ±〈β, f | a+2

a2 | β, f 〉±
±〈β, f | a+a | β, f 〉2±

. (31)
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Fig. 2. Variation of the functionsD1(2) andD2(2) with |β| for η2 =
0.7. Solid curves (the even Roy-type NCS) and broken curves (the
odd Roy-type NCS).

If g(2)
+ (0) < 1 (or g(2)

− (0) < 1), we say that the even (or odd) Roy-type NCS given
by Eq. (12) exhibits the antibunching effect.

Substituting Eqs. (19) and (28) into Eq. (31), for the even and odd Roy-type
NCSs, we have

g(2)
± (0)=

∞∑
n=0

|βn+2±(−β)n+2|2[ f (n+2)!]2

n!

N2±N2
f

( ∞∑
n=0

|βn+1±(−β)n+1|2[ f (n+1)!]2

n!

)2 . (32)

The right hand side of Eq. (14) can be less or greater than 1, producing either
bunching (super-Poissonian statistics) or antibunching (sub-Poissonian statistics)
independently of the symmetry of the state, in contrast with the usual algebra
where antibunching effects are shown only by odd CSs (Xia and Guo, 1989). With
the aid of a numerical method, the variations of functionsg(2)

± (2) versus|β| (when
argβ = 0 andη2 = 0.7) are shown in detail in Fig. 3.

From Fig. 3, we can see that the even Roy-type NCS may exhibit the an-
tibunching effect in some wide ranges of|β| for a fixed value ofη. For exam-
ple, forη2 = 0.7, except the ranges 4.3250< |β| < 5.7799 and 14.3362< |β| <
17.0509, the even Roy-type NCS exhibits the antibunching effect. While the odd
Roy-type NCS has no antibunching effect in some ranges of|β| for a fixed value of
η. For example, the corresponding ranges forη2 = 0.7 are 4.5133< |β| < 5.9436
and 14.6557< |β| < 17.0561. This means that the sub-Poissonian distributions
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Fig. 3. Variation of the functiong(2)
± (0) with |β| for η2 = 0.7. Solid curve (the

even Roy-type NCS) and broken curve (the odd Roy-type NCS).

(i.e., the antibunching properties) of the even and odd Roy-type NCSs are very
different from those of the usual even and odd CSs (Xia and Guo, 1989).

4. CONCLUSIONS

To sum up, we introduced a type of new even and odd NCSs (the even and
odd Roy-type NCSs), which has rather different statistical properties from those
of the usual even and odd CSs. It is found that for a fixed value (η2 = 0.7) of
the parameterη, the squeezing only consists in the even Roy-type NCS, and the
amplitude-squared squeezing and antibunching effect appear for both even and
odd Roy-type NCSs in some different ranges of|β|.

It is interesting to note that whenf (n)→ 1, the even and odd Roy-type NCSs
become the usual even and odd CSs. Therefore, the usual even and odd CSs are
the special cases of the new even and odd NCSs whenf (n)→ 1.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of
China (No. 10074072) and the Natural Science Foundation of Shandong Province
of China.

REFERENCES

Abramowitz. M. and Stegun, I. A. (eds.) (1972).Handbook of Mathematical Functions, Dover, New
York.

Biedenharn, L. C. (1989).Journal of Physics A: Mathematical and General22, L873.



P1: GCR

International Journal of Theoretical Physics [ijtp] pp777-ijtp-461705 April 1, 2003 21:12 Style file version May 30th, 2002

98 Wang, Feng, Gao, Liu, and Zhan

Das, P. K. (2000).International Journal of Theoreticla Physics39, 2007.
de Matos Filho, R. L., and Vogel, W. (1996).Physics Review A54, 4560.
Dodonov, V. V., Malkin, I. A., and Man’ko, V. I. (1974).Physica72, 597.
Drinfeld, V. G. (1986).Proceedings of International Congress of Mathematicains, Berkeley, Vol. 1,

p. 798.
Glauber, R. J. (1963).Physical Review131, 2766.
Hillery, M. (1987).Physical Review A36, 3796.
Jimbo, M. (1986).Letters in Mathematical Physics11, 247.
Macfarlane, A. J. (1989).Journal of Physics A: Mathematical and General22, 4581.
Man’ko, V. I., Marmo, G.,et al. (1993).International Journal of Modern Physics A8, 3577.
Man’ko, V. I., Marmo, G.,et al. (1993).Physics Letters A176, 173.
Man’ko, V. I., Marmo, G.,et al., (1997).Physica Scripta55, 528.
Mancini, S. (1997).Physics Letters A233, 291.
Roy, B. and Roy, P. (2000).Journal of Optics B: Quantum Semiclass. Opt.2, 65.
Sun, J. Z., Wang, J. S., and Wang, C. K. (1992).Chinese Journal of Quantum Electronics[in Chinese]

9, 397.
Walls, D. F. (1983).Nature306, 141.
Xia, Y. J. and Guo, G. C. (1989).Physics Letters A136, 281.


